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1. Introduction

The theoretical description of the mechanisms for the energization of ions in plasma devices and in space
physics is an important endeavor [1–3]. The basis for numerous numerical models is the collisionless linear
Vlasov equation with specified electromagnetic wave fields or from a self-consistent treatment of the non-
linear Vlasov–Maxwell equations [4,5]. There is a long history of the use of an expansion of the space and
velocity dependent ion distribution function in Fourier–Hermite basis functions [6–14]. The choice of a Fou-
rier expansion in the spatial variable is justified by the use of a finite domain and periodic boundary condi-
tions. Hermite polynomials are a logical choice for the basis set in velocity as the cartesian velocity
components are on the infinite interval and the Hermite polynomials are orthogonal with the Maxwellian
weight function. Hermite polynomial expansions are also employed in other applications [15,16]. However,
several authors have reported convergence problems with this approach due to two phenomena referred to
as ‘‘filamentation’’ [7–9,17] and ‘‘recurrence’’ [7,10,11,18]. They both arise from the free-streaming convective
term in the Vlasov equation and the limited resolution of the distribution function owing to the finite discret-
izations employed to solve the Vlasov equation.

It has been customary in numerous applications of the Vlasov equation to consider an oscillatory perturba-

tion of the velocity distribution function in space of the form cosð~k~xÞ. If only the collisionless free-streaming

term is retained, the solution evolves along the characteristic ~x! ~x� ~v~t and the exact solution is of the form

cos½~kð~x� ~v~tÞ� as discussed in Section 2. The velocity distribution will thus oscillate in velocity and the frequency

of the oscillations will increase with time. The numerical challenge posed by this problem is to resolve the rapid
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oscillations of the distribution function in velocity space especially for long times. If some grid is chosen on

which the Vlasov equation is solved, the resolution of the grid must be made sufficiently fine in order to accu-

rately resolve the distribution function. The same issue arises if the distribution function is expanded in some

basis set such as the Hermite functions. The number of terms in the expansion must increase in order to provide

the resolution needed to accurately approximate the distribution function. It is these rapid oscillations of the

distribution function that are referred to as fine structures or filamentation [7–9,17]. It is also related to the non-

physical recurrence of the initial data in several simulations that have been reported [7,10,11,18].
In the present paper, we employ a Fourier–Hermite expansion to represent the velocity distribution func-

tion in position and velocity as done previously [6–12,14]. The Fourier–Hermite coefficients in this expansion
satisfy a set of ordinary differential equations in time determined from the Vlasov equation. Owing to the nat-
ure of the initial perturbation chosen, only three Fourier modes are required for an exact representation of the
distribution function in position. By contrast, the infinite series in the Hermite basis functions must be trun-
cated at some finite number, N. It has been demonstrated [6,9,10,12] that this truncation leads to what appears
to be an instability and instead a closure condition which relates the (N + 1)st expansion coefficient (or
moment) to the lower order moments is required [9]. An interpretation of the different closure conditions
in terms of the eigenvalue spectrum of the discretized free streaming operator in the Vlasov equation has been
presented by Joyce et al. [9] and by Holloway [13].

The main objective of the present paper is to demonstrate spectral convergence of the Hermite expansion of
the distribution function. We compare the exact solution with the distribution function determined from the
time integration of the set of ordinary differential equations for the expansion coefficients with and without
a closure condition. The exact Hermite expansion coefficients are also calculated from the exact analytic solu-
tion and spectral convergence is demonstrated. We also include an important scaling of the Hermite basis func-
tions [14–16,19] and show the improved convergence that can be achieved. In Section 2, the solution of the free
streaming term of the Vlasov equation is presented for periodic boundary conditions. The solution given by the
Fourier–Hermite expansion is discussed in Section 3. The exact representation in the Fourier–Hermite basis is
calculated in Section 4. A discussion of the results and spectral convergence is presented in Section 5.
2. The Vlasov equation

The linear collisionless Vlasov equation for the interaction of an ensemble of ions, of charge q and mass m,
with a uniform magnetic field B ¼ B0êz directed along the z-axis and a perpendicular electric field
Eð~x;~tÞ ¼ E0ð~x;~tÞêx is given by the Vlasov equation
o~f
o~t
þ ~vx

o~f
o~x
þ q

m
B0~vy þ E0ð~x;~tÞ
� � o~f

o~vx
� q

m
B0~vx

o~f
o~vy
¼ 0: ð1Þ
An often used technique to solve Eq. (1) is to expand the ion distribution function in a Fourier series in space
and Hermite polynomials in velocity. A set of coupled ordinary differential equations for the expansion coef-
ficients is thus obtained and integrated in time. The time integration of these moment equations yields numer-
ical instabilities. These instabilities arise from the convective term and in this note we address this aspect of the
spectral solution. Hence, we consider the solution of the simplified Vlasov equation with only the convective
term and deletion of the terms with the electromagnetic fields, that is
o~f
o~t
þ ~vx

o~f
o~x
¼ 0 ð2Þ
with the initial condition
~f ð~x;~vx; 0Þ ¼ eF ð~vxÞ 1þ cosð~k~xÞ
� �

; ð3Þ
where eF is the Maxwellian distribution function
eF ð~vxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2pkB
eT

r
exp � m~v2

x

2kB
eT

� �
; ð4Þ



L. Gibelli, B.D. Shizgal / Journal of Computational Physics 219 (2006) 477–488 479
and kB is the Boltzmann constant and eT is the ion temperature. Eq. (3) is often chosen as the initial pertur-
bation from Maxwellian in the study of Landau damping for the Vlasov–Poisson equations.

Given that the initial condition is periodic of period 2p=~k, we solve Eq. (2) on the domain ½�p=~k; p=~k� with
periodic boundary conditions. We define the dimensionless variables
x ¼ ~k~x; v ¼
ffiffiffiffiffiffiffiffiffi

m

kB
eT

r
~vx; t ¼ ~k

ffiffiffiffiffiffiffiffiffi
kB
eT

m

s
~t; f ¼ ~k

ffiffiffiffiffiffiffiffiffi
kB
eT

m

s
~f ; ð5Þ
and rewrite Eqs. (2) and (3) in the dimensionless form
of
ot
þ v

of
ox
¼ 0; x 2 ½�p; p� ð6Þ
and
f ðx; v; 0Þ ¼ 1ffiffiffiffiffiffi
2p
p exp � v2

2

� �
ð1þ cos xÞ: ð7Þ
The analytic solution of Eq. (6) satisfying the initial condition (7) is
f ðx; v; tÞ ¼ 1ffiffiffiffiffiffi
2p
p exp � v2

2

� �
1þ cosðx� vtÞf g: ð8Þ
3. Fourier–Hermite solution of the Vlasov equation

We expand the ion velocity distribution function in the Fourier–Hermite basis, that is
f ðx; v; tÞ ¼
X1

l¼�1

X1
n¼0

ð�iÞnĝl;nðtÞF lðxÞhnðsvÞ; ð9Þ
where Fl(x) and hn(sv) are the Fourier and Hermite basis functions, respectively, s is an important scaling fac-
tor [14–16,19] and i ¼

ffiffiffiffiffiffiffi
�1
p

. The Fourier basis functions are Fl(x) = eixl and satisfy the orthogonality condi-
tion 1

2p

R p
�p F lF �l0 dx ¼ dl;l0 where the asterisk denotes the complex conjugate. In view of the form of the analytic

solution, Eq. (8) in the present application, the sum over Fourier modes is truncated at l = ±1. If Hn(x) de-
notes the Hermite polynomials given by
HnðxÞ ¼ ð�1Þn ex2 d

dx

	 
n

e�x2

; ð10Þ
the Hermite basis functions, hn, are defined by
hnðxÞ ¼
H nðxÞ

p1=4
ffiffiffiffiffiffiffiffi
2nn!
p exp � x2

2

� �
; ð11Þ
and satisfy the orthogonality condition
Z 1

�1
hnhn0 dx ¼ dn;n0 : ð12Þ
We use the expansion (9) in Eq. (6), multiply the equation by F l0hn0 and integrate over position and velocity,
and we get
dĝl;n

dt
þ l

s

ffiffiffi
n
2

r
ĝl;n�1 �

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
ĝl;nþ1

 !
¼ 0; l ¼ �1; 0; 1; n ¼ 0; . . . ;1: ð13Þ
In obtaining Eq. (13), we used the orthogonality conditions for the Fourier–Hermite basis functions and the
recurrence relation
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xhnðxÞ ¼
ffiffiffi
n
2

r
hn�1ðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
hnþ1ðxÞ: ð14Þ
Given that the initial condition for Eq. (13) is real, the coefficients ĝl;n remain real for all time [9]. Also, since
the distribution function is real, we have that ĝ�l;n ¼ ĝl;n.

The moment equations, Eq. (13), define the time evolution of the matrix of Fourier–Hermite coefficients. This
set of coupled equations forms an infinite hierarchy which must be truncated in some reasonable manner, i.e.
dgl;n

dt
þ l

s

ffiffiffi
n
2

r
gl;n�1 �

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r
gl;nþ1

 !
¼ 0; l ¼ �1; 0; 1; n ¼ 0; . . . ;N : ð15Þ
The expansion coefficients so computed, gl,n, are approximations to the exact ones, ĝl;n. The truncation of the
moment equations for this simplified Vlasov equation as well as for the Vlasov–Poisson system has received
considerable attention in the literature. We show, as discussed previously [6–10,12], that the truncation con-
dition usually adopted
gl;n ¼ 0 n P N þ 1 ð16Þ
results in large oscillations in the distribution function and is not useful. These instabilities arise because the
time derivative of gl,N, given by Eq. (15), requires gl,N+1 which is discarded. There have been numerous anal-
yses of this problem and remedies that include filtering [7,18,17], addition of a collision term that acts as a
damping term [8–10], and a closure condition based on interpolation so that the moment gl,N+1 that occurs
in Eq. (15) is not discarded [9]. So instead of (16), we employ an estimate of the value of gl,N+1 with an extrap-
olation from lower order moments. One such scheme is based on the fourth order interpolation [9]
gl;Nþ1 ¼ 4gl;N � 6gl;N�1 þ 4gl;N�2 � gl;N�3: ð17Þ
This method of truncation with interpolation is adopted in the numerical solution of the Vlasov equation in
order to avoid the recurrence effect [9,10]. Joyce et al. [9] and Holloway [13] have shown that the truncation,
Eq. (16), reduces the otherwise continuous eigenvalue spectrum of the infinite set of equations, Eq. (13), to a
discrete spectrum of purely imaginary eigenvalues. Thus the solution of Eq. (15) with Eq. (16) is oscillatory. By
contrast, the use of the interpolation, Eq. (17), introduces a real part to the eigenvalues and hence the system,
Eq. (15), with Eq. (17) exhibits dissipation. We have confirmed these behaviors numerically.
4. Expansion of the analytic solution in Hermite polynomials

The exact expansion coefficients are given by
ĝl;nðtÞ ¼
in

2p

Z p

�p

Z 1

�1
f ðx; v; tÞF lðxÞhnðsvÞdxdv: ð18Þ
In view of the form of the solution Eq. (8), only the coefficients with l = 0 and l = ±1 are nonzero. The main
objective reduces to a study of the convergence of the expansions of F(v) cos(vt) and F(v) sin(vt) in Hermite
basis functions. This is similar to a study reported by Tang [15] who employed Gaussian quadratures to cal-
culate the expansion coefficients. In this paper we make use of exact results [20] for the integrals that occur.
These are
Z 1

�1
dy exp½�a2y2� cosðbyÞH 2nðyÞ ¼

ffiffiffi
p
p

exp � b
2a

	 
2
" #

1

a
a2 � 1

a2

	 
n

H 2n
b

2að1� a2Þ1=2

" #
; ð19ÞZ 1

�1
dy exp½�a2y2� sinðbyÞH 2nþ1ðyÞ

¼ i
ffiffiffi
p
p

exp � b
2a

	 
2
" #

a2 � 1

ja2 � 1j
ða2 � 1Þ1=2

a2

a2 � 1

a2

	 
n

H 2nþ1

b

2að1� a2Þ1=2

" #
; ð20Þ
for a 6¼ 1, and
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Z 1

�1
dy exp½�y2� cosðbyÞH 2nðyÞ ¼ ð�1Þn

ffiffiffi
p
p

b2n exp � b2

4

� �
; ð21ÞZ 1

�1
dy exp½�y2� sinðbyÞH 2nþ1ðyÞ ¼ ð�1Þn

ffiffiffi
p
p

b2nþ1 exp � b2

4

� �
; ð22Þ
for a = 1. The nonzero coefficients defined by Eq. (18) are given by
ĝ0;2n ¼
1

p1=4

ð�1Þn½ð2nÞ!�1=2

2nn!

s

ðs2 þ 1Þ1=2

s2 � 1

s2 þ 1

� �n

; ð23Þ
and for s 6¼ 1
ĝ1;2nðtÞ ¼
1

p1=4

ð�1Þn

2nþ1½ð2nÞ!�1=2
exp � t2

2 1þ s2ð Þ

� �
s

ð1þ s2Þ1=2

1� s2

1þ s2

� �n

H 2n
st

ðs4 � 1Þ1=2

" #
; ð24Þ

ĝ1;2nþ1ðtÞ ¼
1

ð2p1=2Þ1=2

i2nþ1

2nþ1½ð2nþ 1Þ!�1=2
exp � t2

2ð1þ s2Þ

� �
1� s2

js2 � 1j
sð1� s2Þ1=2

1þ s2

1� s2

1þ s2

� �n

H 2nþ1

st

ðs4 � 1Þ1=2

" #
;

ð25Þ
whereas for s = 1
ĝ1;2nðtÞ ¼
1

ð2p1=2Þ1=2

1

2nþ1½ð2nÞ!�1=2
t2n exp � t2

4

� �
; ð26Þ

ĝ1;2nþ1ðtÞ ¼
1

p1=4

1

2nþ2½ð2nþ 1Þ!�1=2
t2nþ1 exp � t2

4

� �
: ð27Þ
These results permit a careful study of the spectral convergence of the exact solution as well as the solution
obtained from the time integration of the moment equations, Eq. (15), with the truncation condition given
by Eq. (16) or Eq. (17). We also study the role of scaling parameter, s, on the rate of convergence.
5. Discussion of results: spectral convergence

The main objective of the present note is twofold. We are primarily interested in the behavior of the moment
equations, Eq. (15), with regards to the numerical stability of the time integration for long times. We study the
role of the scaling parameter in accelerating the convergence and the closure of the moment equations with an
interpolation scheme, Eq. (17). We also study the spectral convergence of the exact expansion as this provides
limits on the applicability of the Hermite basis function expansion. The coefficients g0,n do not depend on time,
so we will consider only the coefficients g1,n. A fourth-order Runge–Kutta ODE solver was employed to inte-
grate Eq. (15). We have confirmed numerically that the eigenvalues of this system with the truncation equation
(16) and the interpolation equation (17) lie inside the stability region of this ODE solver. The features of the
solution of the free streaming portion of the Vlasov equation that we report are not due to the ODE solver used.

Fig. 1 shows a comparison of the variation of the exact coefficients (solid line), obtained from Eqs. (23), (26)
and (27), and their approximation from the integration of Eq. (15) (solid circles) with no scaling (s = 1) and
with truncation of the moment equations at N = 50. For the smaller times chosen in Fig. 1a and b, the two
results are almost indistinguishable. However, it is clear from the results for t = 10 in Fig. 1d that an instability
has occurred in the numerical integration of the moment equations. The instability is also apparent in Fig. 1c
for large n. One reason is that spurious oscillations are excited at the boundary, n = N, and then propagate
back to smaller n [12]. Moreover for t = 10, the coefficients are increasing with n and it is clear that the expan-
sion of the solution in Hermite polynomials requires additional terms to achieve convergence. The variation of
the distribution at x = 0 versus v is shown in Fig 2 for the conditions in Fig. 1. The incomplete convergence of
the distribution at the extremes of the domain shown for t = 8 and 10 in Fig. 2c and d, respectively, is clear.

In Fig. 3, we show a dramatic improvement in these results with the scaling of the Hermite polynomials
(s = 1.25). The most notable feature of the results in Fig. 3 is that the variation of the expansion coefficients
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Fig. 1. Variation of the coefficients g1,n versus n for t equal to: (a) 4, (b) 6, (c) 8 and (d) 10. Solid lines represent the analytic results derived
from Eqs. (23), (26) and (27); solid circles are the results from the numerical integration of Eq. (15); N = 50, s = 1.0; truncation condition,
Eq. (16), employed.
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Fig. 2. Variation of the distribution function versus velocity at x = 0 for t equal to: (a) 4, (b) 6, (c) 8 and (d) 10. Solid lines represent the
analytical solution, Eq. (8); solid circles are the results from the numerical integration of Eq. (15); N = 50, s = 1.0; truncation condition,
Eq. (16), employed.
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Fig. 3. Variation of the coefficients g1,n versus n for t equal to: (a) 4, (b) 6, (c) 8 and (d) 10. Solid lines represent the analytic results derived
from Eqs. (23)–(25); solid circles are the results from the numerical integration of Eq. (15); N = 50, s = 1.25; truncation condition, Eq.
(16), employed.

L. Gibelli, B.D. Shizgal / Journal of Computational Physics 219 (2006) 477–488 483
has been displaced to lower n for all times and it is clear that the convergence of the expansion in Hermite basis
functions is more rapid than in Fig. 1 with s = 1. The curve for t = 10 has attained a maximum at about n � 30
and then decreases whereas the corresponding curve in Fig. 1 has not achieved a maximum by n = 50. The
coefficients g1,n are indistinguishable from the exact coefficients, ĝ1;n, except for t = 10 and n � 50 in
Fig. 3d. The value of s used lies in the middle of the range of values employed in the partial optimization
of s as discussed in Fig. 9 later.

In Fig. 4, we show analogous results for s = 1 and with the application of the interpolation closure given by
Eq. (17). The important feature is that the instability shown in Fig. 1 for t = 10 does not occur but the var-
iation versus n has not changed which is not unexpected. The convergence in Hermite polynomials remains
restricted by the finite number of terms retained and the importance of appropriately scaling the Hermite poly-
nomials is clear. The variation of the distribution function versus velocity at x = 0 for two reduced times t = 8,
10, is shown in Fig. 5a and b, for the conditions of Fig. 1 (s = 1.25 and without interpolation), and in Fig. 5c
and d for the conditions of Fig. 4 (s = 1 and with interpolation). The results with scaling provide the best
solutions.

Filamentation and recurrence phenomena can be easily explained in terms of the time evolution of the coef-
ficients g1,n. As previously discussed, filamentation refers to the oscillations of the distribution function versus
velocity with a frequency that increases with time as shown in Figs. 2 and 5. It is a physical consequence of the
free-streaming evolution that results in the variation of the expansion coefficients being displaced to larger n as
time increases (solid line in Fig. 1). The convergence of the expansion in Hermite basis functions is thus slower.
Fig. 6 compares the variation of g1,n versus n for truncation, Eq. (16) and interpolation, Eq. (17), for a small
time interval t = 9 to t = 11.5 and illustrates the nonphysical recurrence effect. As shown in Fig. 6a (t = 9)
the coefficients g1,n computed using the truncation condition (16), represented by solid circles and dashed lines,
are almost the same as the ones computed using the interpolation condition (17), represented by the solid lines,
except for small oscillations for n � N. However, for the larger times chosen, the time evolution is different. The
interpolation condition (17) preserves the main feature of the free-streaming evolution, that is, the variation of
the coefficients is progressively displaced to greater n. With the truncation condition (16), the variation of the
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Fig. 4. Variation of the coefficients g1,n versus n for t equal to: (a) 4, (b) 6, (c) 8 and (d) 10. Solid lines represent the analytic results derived
from Eqs. (23), (26) and (27); solid circles are the results from the numerical integration of Eq. (15); N = 50, s = 1.0; g1,N+1 = 4g1,N �
6g1,N�1 + 4g1,N�2 � g1,N�3, Eq. (17).
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Fig. 5. Variation of the distribution function versus velocity at x = 0 and N = 50. Solid lines represent the analytic solution, Eq. (8); solid
circles and dashed lines are the results from the numerical integration of Eq. (15) for g1,N+1 = 0 and s = 1.25 at the reduced time t equal to
(a) 8 and (b) 10, and for g1,N+1 = 4g1,N � 6g1,N�1 + 4g1,N�2 � g1,N�3 and s = 1 at the reduced time t equal to (c) 8 and (d) 10.
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Fig. 6. Variation of the coefficients g1,n versus n for t equal to: (a) 9, (b) 10, (c) 10.5 and (d) 11.5. Solid circles and dashed lines represent the
results from the numerical integration of Eq. (15) with the truncation condition g1,N+1 = 0; solid lines represent the results from the
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L. Gibelli, B.D. Shizgal / Journal of Computational Physics 219 (2006) 477–488 485
coefficients g1,n is reflected back in time as seen clearly in Fig. 6c (t = 10.5) and for t = 11.5, Fig. 6d, it is almost
the same as at t = 9, Fig. 6a. Thus the computed distribution function appears to be a periodic function of time
arising from the truncation condition (16).

In order to study the spectral convergence of the exact expansion, we compare the exact solution, Eq. (8),
with the solution computed using the first N exact Hermite coefficients, given by Eqs. (23)–(25) for s 6¼ 1 or
Eqs. (23), (26) and (27) for s = 1. We define the local truncation error as
TENðx; v; tÞ ¼ log f ðx; v; tÞ �
X1

l¼�1

XN

n¼0

ð�1Þnĝl;nðtÞF lðxÞhnðsvÞ
�����

�����; ð28Þ
and consider the local truncation error at x = 0.
Fig. 7 shows the local truncation error, Eq. (28), versus v for a fixed number of Hermite polynomials,

N = 50, at three reduced times t = 8, 10 and 12 and for (a) s = 1 and (b) s = 1.5. The errors increase with time
and appear to attain a maximum value in the vicinity of v = 0. In Fig. 8, we show for t = 12 the decrease in
TEN(x = 0,v,t = 12) for N = 50, 75 and 100 for (a) s = 1 and (b) s = 1.5. The improvement in the convergence
is evident with the appropriate scaling. As in Fig. 7, the error in the vicinity of v = 0 appears to be a maximum.

In order to define an optimum value for the scaling parameter, we define the LðNÞmax error
LðNÞmaxðx; tÞ ¼ max
v16v6v2

TEN ðx; v; tÞ; ð29Þ
where v1 and v2 define the velocity domain considered. We chose v1 = �10 and v2 = 10.
Fig. 9 shows the LðNÞmax error, Eq. (29), versus N for x = 0 at the reduced time t = 12 for different values of the

scaling parameter. It is clear that the results are not improved for s = 0.75 (solid line a). However, for s > 1,
the LðNÞmax error is dramatically reduced. The optimum value of the scaling parameter appears to be s = 1.5 (solid
line d). The LðNÞmax error with s = 1.75 (solid line e) is in fact greater than for s = 1.5 (solid line d) for N > 60. It is
important to stress that these conclusions depend on the time chosen. If we had considered a different reduced
time, the optimum value of the scaling parameter would be different.
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Fig. 7. Local truncation error at x = 0 for a fixed number of Hermite polynomials, N = 50; (a) s = 1 and (b) s = 1.5.
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